安全上のご注意
ご使用の前に、取扱説明書をよくお読みのうえ、正しくお使いください。

プレミアム効率IE3
三相かご形誘導電動機
国内トップランナー基準（プレミアム効率IE3クラス）対応

Mighty Econo
機器の省エネ&高効率化を実現

Nidec
All for dreams
日本電産デジタルモータ株式会社

In Japan

© Nidec Techno Motor Corporation

In Japan

© Nidec Techno Motor Corporation

In Japan

© Nidec Techno Motor Corporation
IE3 (プレミアム効率）対応
高効率モータ
機器の省エネ＆高効率化を実現

トップランナー方式による
高効率モータ規制について

現在、国際的な地球温暖化防止を目的に、エネルギー使用量を低減し、CO2の発生を抑える取り組みが世界各国で進んでいます。日本では、省エネルギー基準を定める方式の一つとして、「トップランナー方式」が導入されていますが、この度、経済産業省総合資源エネルギー調査会がエネルギー基準規制の取りまとめに、三相誘導電動機が「トップランナー方式の対象となる特定機器」に追加されました。

資源エネルギー庁の調査では、三相誘導電動機の消費電力量は、国内の消費電力量の約55%を占めるとされており、仮に全ての三相誘導電動機がIE3 (プレミアム効率）に置き換わった場合、消費電力量全体の約1.5%の削減が可能になると試算されています。

<table>
<thead>
<tr>
<th>導入開始年度</th>
</tr>
</thead>
</table>
| 日本 | IE2 | IE3 | IE2 | IE2 | IE3 | 2015年11月1日ゼロベース化 | IE3 | 2015年11月1日ゼロベース化 | IE3 |}

各種効率クラス別シリーズを販売中

- IE4 スーパープレミアム効率
- IE3 プレミアム効率
- IE2 高効率
- IE1 標準効率

IE3モータ (IE3クラス)
IE2モータ (IE2クラス)
標準効率モータ
各部主要寸法

![Dia 1](圖1.jpg)

![Dia 2](圖2.jpg)

![Dia 3](圖3.jpg)

![Dia 4](圖4.jpg)

![Dia 5](圖5.jpg)

寸法諸元【フランジ形】

<table>
<thead>
<tr>
<th>機種（寸法）</th>
<th>軸径</th>
<th>軸径</th>
<th>L</th>
<th>LLA</th>
<th>LLB</th>
<th>LE</th>
<th>LC</th>
<th>LLG</th>
<th>LN</th>
<th>LZ</th>
<th>LIR</th>
<th>D</th>
<th>KD</th>
<th>KL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td></td>
<td>1</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>0.75</td>
<td>2</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.75</td>
<td>2</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td></td>
<td>3</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td>4</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>7.5</td>
<td>5</td>
<td></td>
<td>5</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>11</td>
<td>7.5</td>
<td></td>
<td>6</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td></td>
<td>7</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
<td>8</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td></td>
<td>9</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td></td>
<td>10</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td></td>
<td>11</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td></td>
<td>12</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>185</td>
<td>180</td>
<td>175</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>155</td>
<td>150</td>
</tr>
</tbody>
</table>

軸端詳細図

![Axle End Detailed View](axle_end_detailed_view.jpg)

注: 1. 機種〜図1〜図5の表示は、JS 2011-16およびJIS B 1726の基準に則り作成されています。一部を参照しています。
2. 共通部品の表示は、JIS 2011-16またはJIS B 1726に則り作成されています。
3. ヒール端子については標準的なものに変更することがあります。
特性一覧表 200V級

<table>
<thead>
<tr>
<th>極数</th>
<th>出力(kW)</th>
<th>桁番号</th>
<th>金負荷電流(A)</th>
<th>金負荷回転速度(min⁻¹)</th>
<th>効率値(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.75</td>
<td>80M</td>
<td>3.6</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>90L</td>
<td>6.2</td>
<td>5.7</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>93L</td>
<td>8.3</td>
<td>8.2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>112M</td>
<td>13.0</td>
<td>14.1</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>132S</td>
<td>29.2</td>
<td>29.7</td>
<td>29.5</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>160M</td>
<td>43</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>160L</td>
<td>66</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>180M</td>
<td>81</td>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>180L</td>
<td>105</td>
<td>103</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>200L</td>
<td>120</td>
<td>117</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>200LB</td>
<td>156</td>
<td>153</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>225SB</td>
<td>189</td>
<td>189</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>80M</td>
<td>3.5</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>90L</td>
<td>6.9</td>
<td>6.2</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>100L</td>
<td>10.2</td>
<td>8.4</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>112M</td>
<td>15.4</td>
<td>14.3</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>132S</td>
<td>29.5</td>
<td>29.6</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>160M</td>
<td>45</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>160L</td>
<td>68</td>
<td>66</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>180M</td>
<td>84</td>
<td>80</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>180L</td>
<td>115</td>
<td>105</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>200L</td>
<td>141</td>
<td>129</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>200LB</td>
<td>165</td>
<td>155</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>225SB</td>
<td>202</td>
<td>193</td>
<td>178</td>
</tr>
</tbody>
</table>

特性一覧表 400V級

<table>
<thead>
<tr>
<th>極数</th>
<th>出力(kW)</th>
<th>桁番号</th>
<th>金負荷電流(A)</th>
<th>金負荷回転速度(min⁻¹)</th>
<th>効率値(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.75</td>
<td>80M</td>
<td>1.8</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>90L</td>
<td>3.1</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>93L</td>
<td>4.2</td>
<td>4.1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>112M</td>
<td>7.5</td>
<td>7.0</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>132S</td>
<td>14.4</td>
<td>13.6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>160M</td>
<td>21</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>160L</td>
<td>26</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>180M</td>
<td>33</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>180L</td>
<td>53</td>
<td>52</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>200L</td>
<td>65</td>
<td>64</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>200LB</td>
<td>78</td>
<td>77</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>225SB</td>
<td>84</td>
<td>85</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>80M</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>90L</td>
<td>3.4</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>100L</td>
<td>5.1</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>112M</td>
<td>7.7</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>132S</td>
<td>11.6</td>
<td>10.4</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>160M</td>
<td>23</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>160L</td>
<td>29</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>180M</td>
<td>34</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>180L</td>
<td>58</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>200L</td>
<td>70</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>200LB</td>
<td>77</td>
<td>77</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>225SB</td>
<td>101</td>
<td>97</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>90L</td>
<td>2.0</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>100L</td>
<td>3.7</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>112M</td>
<td>5.5</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>132S</td>
<td>9.1</td>
<td>8.0</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>132M</td>
<td>12.9</td>
<td>12.0</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>160M</td>
<td>22</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>160L</td>
<td>35</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>180M</td>
<td>43</td>
<td>41</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>180L</td>
<td>57</td>
<td>53</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>200L</td>
<td>66</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>200L</td>
<td>79</td>
<td>76</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>225SB</td>
<td>83</td>
<td>79</td>
<td>73</td>
</tr>
</tbody>
</table>

注1: 定格出力は駆動条件によって異なります。
注2: 定格出力は冷蔵庫を含むもの、保証値ではありません。
注3: インバータ電流についての説明は、別途調査して Caucasus.
結線
モータの配線は電気設備基準、各電力会社の規定に従ってください。

<table>
<thead>
<tr>
<th>柄番号</th>
<th>リード線本数</th>
<th>結線</th>
<th>結線図</th>
<th>結線方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>80M ～ 112M</td>
<td>9 (2重電圧)</td>
<td>2人/人 (200V級/400V級)</td>
<td>200V級 LINE</td>
<td>U1 V1 W1 U3 V3 W3 U2-V2-W2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400V級 LINE</td>
<td>U1 V1 W1 U3 V3 W3</td>
</tr>
<tr>
<td>132S ～ 225S</td>
<td>12 (2重電圧)</td>
<td>2人/2△ (200V級)</td>
<td>U1 V1 W1 U2 V2 W2 U3 V3 W3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2△ LINE</td>
<td>U1 V1 W1 U3 V3 W3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U4-V4-W4</td>
<td>U3 V3 W3</td>
</tr>
</tbody>
</table>

追加オプション
- 端子箱位置：負荷側より見て右側
- 回転方向：負荷側より見て時計方向（CW）
- 取付方向：軸上、軸下
- 屋外仕様：屋外型端子箱
- 軸形状変更：長さ、ネジ加工追加など
- 塗装仕様変更：塗装色、塗料など

その他、対応につきましては別途ご相談ください。

「IE3インバータモータシリーズ」近日発売予定
（出力範囲、周波数制御範囲：近日発表）

IE3効率モータの注意点
高効率モータ採用あり、次の事項にご注意ください。

回転速度
- 高効率モータは、損失を低減しているため、標準モータに比べて一般的に回転速度が速くなります。このため、高効率モータに置き換えた場合、装置によっては回転速度が速くなることにより、仕事量が増加します。仕事量が増加することにより、消費電力が増加する場合がございます。
- また、始動電流が標準モータに対して高くなり、ブレーキなどの変更が必要になる場合があります。

オイルシール
- UU軸受（接触型軸受）モータの密封性、シール性的を高めるため、軸端部あるいは軸受にシール機能を持たせる場合があります。
- その場合、モータの損失が増加しますので、効率値が低減します。
- カタログの性能値は、オイルシール、接触型軸受を搭載していない場合の数値となります。

ULU軸受使用の場合、トップランナー基準目標効率値を満たさない場合があります。詳細は別途、ご相談ください。